Link Prediction in Heterogeneous Collaboration Networks

نویسندگان

  • Xi Wang
  • Gita Reese Sukthankar
چکیده

Traditional link prediction techniques primarily focus on the effect of potential linkages on the local network neighborhood or the paths between nodes. In this article, we study both supervised and unsupervised link prediction in networks where instances can simultaneously belong to multiple communities, engendering different types of collaborations. Links in these networks arise from heterogeneous causes, limiting the performance of predictors that treat all links homogeneously. To solve this problem, we introduce a new supervised link prediction framework, Link Prediction using Social Features (LPSF ), which incorporates a reweighting scheme for the network based on nodes’ features extracted from patterns of prominent interactions across the network. Experiments on coauthorship networks demonstrate that the choice for measuring link weights can be critical for the link prediction task. Our proposed reweighting method in LPSF better expresses the intrinsic relationship between nodes and improves prediction accuracy for supervised link prediction techniques. We also compare the unsupervised performance of the individual features used within LPSF with two new diffusion-based methods: LPDP (Link Prediction using Diffusion Process) and LPDM (Link Prediction using Diffusion Maps). Experiments demonstrate that LPDP is able to identify similar node pairs, even far away ones, that are connected by weak ties in the coauthorship network using the diffusion process; however, reweighting the network has little impact on prediction performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Link Prediction Method Based on Learning Automata in Social Networks

Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...

متن کامل

Link Prediction across Heterogeneous Social Networks: A Survey

Online social networks have gained great success in recent years. Some online social networks only involving users and social links among users can be represented as homogeneous networks. Meanwhile, some other social networks containing abundant information, which include multiple kinds of nodes and complex relationships, can be denoted as heterogeneous networks. Predicting the missing links or...

متن کامل

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

پیشگویی پیوند در شبکه های اجتماعی با استفاده از ترکیب دسته بندی کننده ها

Abstract Link prediction in social networks is one of the most important activities in analysis of such networks. The importance of link prediction in social networks is due to its dynamic nature. While members and their relationships (links) in such networks are continuously increasing, links may be missed due to various reasons. By predicting such links, the possibility of extension, compl...

متن کامل

Link Prediction in Heterogeneous Networks Based on Tensor Facto- rization

Link Prediction, that is, predicting the formation of links or interactions in a network in the future, is an important task in network analysis. Link prediction provides useful insights for other applications, such as recommendation system, disease-gene candidate detection and so on. Most link prediction methods assume that there is only one single type in the network. However, many real-world...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014